Dynamics of a Vector-Borne model with direct transmission and age of infection
Autor: | Necibe Tuncer, Sunil Giri |
---|---|
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Partial differential equation Applied Mathematics 030231 tropical medicine Dynamics (mechanics) law.invention Term (time) 03 medical and health sciences 030104 developmental biology 0302 clinical medicine Transmission (mechanics) law Modeling and Simulation Vector (epidemiology) Stability theory Applied mathematics Basic reproduction number Incidence (geometry) Mathematics |
Zdroj: | Mathematical Modelling of Natural Phenomena. 16:28 |
ISSN: | 1760-6101 0973-5348 |
DOI: | 10.1051/mmnp/2021019 |
Popis: | In this paper we the study of dynamics of time since infection structured vector born model with the direct transmission. We use standard incidence term to model the new infections. We analyze the corresponding system of partial differential equation and obtain an explicit formula for the basic reproduction numberℜ0. The diseases-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one,ℜ0< 1. Endemic equilibrium exists and is locally asymptotically stable whenℜ0> 1. The disease will persist at the endemic equilibrium whenever the basic reproduction number is greater than one. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |