Certain Varieties of Resolving Sets of A Graph
Autor: | A S Suma, S B Chandrakala, B. Sooryanarayana |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of the Indonesian Mathematical Society. :103-114 |
ISSN: | 2460-0245 2086-8952 |
DOI: | 10.22342/jims.27.1.881.103-114 |
Popis: | Let G=(V,E) be a simple connected graph. For each ordered subset S={s_1,s_2,...,s_k} of V and a vertex u in V, we associate a vector Gamma(u/S)=(d(u,s_1),d(u,s_2),...,d(u,s_k)) with respect to S, where d(u,v) denote the distance between u and v in G. A subset S is said to be resolving set of G if Gamma(u/S) not equal to Gamma(v/S) for all u, v in V-S. The purpose of this paper is to introduce various types of r-sets and compute minimum cardinality of each set, in possible cases, particulary for paths, cycles, complete graphs and wheels. |
Databáze: | OpenAIRE |
Externí odkaz: |