Bounds for extreme singular values of a complex matrix and its applications

Autor: Ayşe Dilek Güngör, Ramazan Türkmen
Rok vydání: 2006
Předmět:
Zdroj: Mathematical Inequalities & Applications. :23-31
ISSN: 1331-4343
DOI: 10.7153/mia-09-03
Popis: In this study, we have obtained bounds for extreme singular values of a complex matrix A of order n × n . In addition, we have found a bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix in the forms H = (1(i + j − 1))i,j=1 , H◦1/2 = (1 (i + j − 1))i,j=1, Tn = [1(g + (i − j)h)]i,j=1 and Hn = [1(g + (i + j)h)]i,j=1
Databáze: OpenAIRE