Popis: |
The next generation of space-borne optical sensor will have to meet tight weight limitation, in order to be viable on smaller, less expensive, launch platforms, while supporting a wide range of mission scenarios. Wide spectral coverage, near-diffraction limited visible quality performance, and increased thermal and structural stability are becoming important features for future space-hardware. SiC represents an emerging technology which is gaining wider acceptance as the leading candidate for the next generation of space flight hardware. As a material for all-reflective flight telescopes and optical benches, SiC offers: the lightweight and stiffness characteristics of beryllium; glass-like inherent stability consistent with visible quality performance levels; superior thermal properties down to cryogenic temperatures and in the presence of large thermal gradients; and an existing, commercially based material and processing infrastructure like aluminum. This paper describes an all-SiC off-axis, three mirror anastigmatic telescope system which promises to meet these stressing technical requirements. The system described maintains a 35 cm entrance aperture with a weight of 14 kgs.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only. |