Popis: |
Land surface moisture plays a crucial role in precipitation patterns across the globe. Evapotranspiration (the combination of ground evaporation (E), canopy evaporation (I), and transpiration (T)) from the land surface can influence precipitation through local recycling and the propagation of moisture to downwind regions. However, the role of the land surface and of T, E, and I individually in these two processes are not well understood and limit our understanding of the role of the land surface for both drought onset and intensification. Here we use a version of the Community Earth System Model (CESM1.2 with the Community Atmosphere Model CAM5 and the Community Land Model CLM5) with online water tracers to directly track and quantify the movement of T, E and I moisture across North America for the 1985–2015 period. Initial findings suggest that over 50% of summer precipitation for much of central and northern US and Canada comes from the land surface. The tracers also suggest that, with the exception of the US west coast and desert southwest, 40-60% of land precipitation across the continent comes from the T component. The connection between land surface moisture and drought episodes are examined for different regions of North America. The individual roles of T, E, and I in shaping droughts are also examined. |