О диаграммах разрушения тел с короткими макротрещинами. Охрупчивание материала при усталостном разрушении

Rok vydání: 2016
Předmět:
DOI: 10.24411/1683-805x-2016-00055
Popis: Рассматривается распространение трещины скачками в квазихрупких материалах при циклическом нагружении. Предлагается использовать для анализа указанного процесса модифицированные диаграммы квазихрупкого разрушения деформируемых тел при монотонном нагружении. За модель деформируемого тела выбрана модель упруго-идеальнопластического материала, имеющего предельное относительное удлинение. Модификация полученных диаграмм при циклическом приложении нагрузки связана с учетом накопления повреждений при неупругом деформировании материала зоны предразрушения. Материал зоны предразрушения охрупчивается из-за суммирования повреждений, которые имеют место при нелинейном деформировании. При учете охрупчивания материала зоны предразрушения используется уравнение типа уравнения Коффина. Получены аналитические выражения, связывающие скачкообразное продвижение вершины усталостной трещины с числом циклов. Проведен подробный анализ процессов продвижения вершин короткой макротрещины и макротрещины средней длины: скорости роста указанные трещин отличаются на порядки, т.к. изменяется зависимость скорости от параметров задачи. Полученные соотношения для средней скорости можно рассматривать как структурные формулы для построения кривых типа кривых Пэриса как для коротких макротрещин, так и для макротрещин средней длины.
Intermittent crack growth in quasi-brittle materials under cyclic loading is studied. This process is analyzed using modified diagrams of quasi-brittle fracture of deformed solids under monotonic loading. A model of perfectly plastic material with ultimate tensile strain is taken as the deformed solid model. The diagrams obtained under cyclic loading are modified by taking into account damage accumulation during inelastic deformation of material in the fracture process zone. The fracture process zone material embrittles due to damage accumulation under nonlinear deformation. Material embrittlement in this zone is taken into account using a Coffin-type equation. Analytical expressions are obtained which relate the intermittent propagation of a fatigue crack tip to the number of cycles. Crack tip propagation for a short and medium length macrocracks is studied in detail: the growth rates for these cracks differ by orders of magnitude because the dependence of rate on problem parameters varies. The derived relations for the average growth rate can be considered as structural formulas for constructing Paris-type curves for both short and medium length macrocracks.
Databáze: OpenAIRE