The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange

Autor: Jianyi Yang, Mary Ashley Rimmer, Antonio Artigues, Yang Zhang, Owen W. Nadeau, Gerald M. Carlson
Rok vydání: 2017
Předmět:
Zdroj: Protein Science. 27:472-484
ISSN: 0961-8368
Popis: Phosphorylase kinase (PhK), a 1.3 MDa regulatory enzyme complex in the glycogenolysis cascade, has four copies each of four subunits, (αβγδ)4 , and 325 kDa of unique sequence (the mass of an αβγδ protomer). The α, β and δ subunits are regulatory, and contain allosteric activation sites that stimulate the activity of the catalytic γ subunit in response to diverse signaling molecules. Due to its size and complexity, no high resolution structures have been solved for the intact complex or its regulatory α and β subunits. Of PhK's four subunits, the least is known about the structure and function of its largest subunit, α. Here, we have modeled the full-length α subunit, compared that structure against previously predicted domains within this subunit, and performed hydrogen-deuterium exchange on the intact subunit within the PhK complex. Our modeling results show α to comprise two major domains: an N-terminal glycoside hydrolase domain and a large C-terminal importin α/β-like domain. This structure is similar to our previously published model for the homologous β subunit, although clear structural differences are present. The overall highly helical structure with several intervening hinge regions is consistent with our hydrogen-deuterium exchange results obtained for this subunit as part of the (αβγδ)4 PhK complex. Several low exchanging regions predicted to lack ordered secondary structure are consistent with inter-subunit contact sites for α in the quaternary structure of PhK; of particular interest is a low-exchanging region in the C-terminus of α that is known to bind the regulatory domain of the catalytic γ subunit.
Databáze: OpenAIRE