On Integrated L1 Convergence Rate of an Isotonic Regression Estimator for Multivariate Observations

Autor: Anne Leucht, Konstantinos Fokianos, Michael H. Neumann
Rok vydání: 2020
Předmět:
Zdroj: IEEE Transactions on Information Theory. 66:6389-6402
ISSN: 1557-9654
0018-9448
Popis: We consider a general monotone regression estimation where we allow for independent and dependent regressors. We propose a modification of the classical isotonic least squares estimator and establish its rate of convergence for the integrated $L^{1}$ -loss function. The methodology captures the shape of the data without assuming additivity or a parametric form for the regression function. Furthermore, the degree of smoothing is chosen automatically and no auxiliary tuning is required for the theoretical analysis. Some simulations and two real data illustrations complement the study of the proposed estimator.
Databáze: OpenAIRE