Gamma Positivity of the Excedance-Based Eulerian Polynomial in Positive Elements of Classical Weyl Groups
Autor: | Hiranya Kishore Dey, Sivaramakrishnan Sivasubramanian |
---|---|
Rok vydání: | 2020 |
Předmět: |
Polynomial
Mathematics::Combinatorics 010102 general mathematics Coxeter group Alternating group Eulerian path 0102 computer and information sciences Type (model theory) 01 natural sciences Combinatorics symbols.namesake Derangement 010201 computation theory & mathematics Symmetric group symbols Enumeration Discrete Mathematics and Combinatorics 0101 mathematics Mathematics |
Zdroj: | Annals of Combinatorics. 24:711-738 |
ISSN: | 0219-3094 0218-0006 |
DOI: | 10.1007/s00026-020-00511-6 |
Popis: | The Eulerian polynomial $$ \mathrm {AExc}_n(t)$$ enumerating excedances in the symmetric group $$\mathfrak {S}_n$$ is known to be gamma positive for all n. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eulerian polynomials are also gamma positive for all n. We consider $$ \mathrm {AExc}_n^+(t)$$ and $$ \mathrm {AExc}_n^-(t)$$ , the polynomials which enumerate excedance in the alternating group $$\mathcal {A}_n$$ and in $$\mathfrak {S}_n - \mathcal {A}_n$$ , respectively. We show that $$ \mathrm {AExc}_n^+(t)$$ is gamma positive iff $$n \ge 5$$ is odd. When $$n \ge 4$$ is even, $$ \mathrm {AExc}_n^+(t)$$ is not even palindromic, but we show that it is the sum of two gamma positive summands. An identical statement is true about $$ \mathrm {AExc}_n^-(t)$$ . We extend similar results to the excedance based Eulerian polynomial when enumeration is done over the positive elements in both type B and type D Coxeter groups. Gamma positivity results are known when excedance is enumerated over derangements in $$\mathfrak {S}_n$$ . We extend some of these to the case when enumeration is done over even and odd derangements in $$\mathfrak {S}_n$$ . |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |