Specific features of optical diffusion in nematic liquid crystals
Autor: | Vadim P. Romanov, D. I. Kokorin, E. V. Aksenova |
---|---|
Rok vydání: | 2013 |
Předmět: |
Materials science
Condensed matter physics business.industry Scattering Diffusion Heavy traffic approximation Atomic and Molecular Physics and Optics Light scattering Electronic Optical and Magnetic Materials Magnetic field Diffusion layer Optics Liquid crystal Effective diffusion coefficient business |
Zdroj: | Optics and Spectroscopy. 115:112-118 |
ISSN: | 1562-6911 0030-400X |
DOI: | 10.1134/s0030400x13070023 |
Popis: | Methods of computer simulation are used to study multiple light scattering in the ordered phase of a nematic liquid crystal. The development of the diffusion regime is studied in detail. It is demonstrated that the transient time depends on the external magnetic field and the direction of the incident radiation. The diffusion coefficients along and across the director are calculated. The validity of the diffusion approximation is controlled using the moments of the distribution function. Analysis of the diffusion coefficients versus the external field shows that the diffusion coefficients remain almost unchanged in the experimental range of the magnetic fields. In the presence of relatively strong fields, the diffusion coefficients increase due to a variation in the shape of the scattering indicatrix and the free-path length of photons. The dependence of the diffusion coefficients on the radiation wavelength is also calculated. Comparison of the simulated results and the experimental data shows that the calculated diffusion rate across the director virtually coincides with the experimental rate. The calculated diffusion coefficient along the director is substantially greater than the corresponding experimental rate. |
Databáze: | OpenAIRE |
Externí odkaz: |