Effects of magnetic island on profile formation in flux-driven ITG turbulence
Autor: | Mikiya Muto, Kenji Imadera, Yasuaki Kishimoto |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Physics of Plasmas. 29:052503 |
ISSN: | 1089-7674 1070-664X |
Popis: | Full-f gyrokinetic simulations of ion temperature gradient (ITG) turbulence in the presence of a magnetic island are performed. A newly developed method for evaluating the flux-surface average is implemented to treat adiabatic electrons inside the magnetic island precisely. A neoclassical simulation below the threshold for linear ITG instability shows that the density profile does not relax at the O-point, although the ion temperature profile is flattened there. This results from the force balance in the direction of the magnetic field between the pressure gradient related to ion parallel motion and the mean radial electric field. A flux-driven ITG turbulence simulation shows a quasi-periodic transport reduction due to interaction between the background temperature profile and the vortex mode, which is a nonlinearly generated mesoscale structure with the same mode numbers as the magnetic island. These results indicate that not only the parallel streaming but also the equilibrium electric field and turbulence contribute significantly to profile formation around a magnetic island. |
Databáze: | OpenAIRE |
Externí odkaz: |