SINGULAR VALUES OF CUMULANT MATRICES
Autor: | M. Rokni, B.S. Berger, Ioannis Minis |
---|---|
Rok vydání: | 1997 |
Předmět: |
Acoustics and Ultrasonics
Mechanical Engineering Mathematical analysis Condensed Matter Physics Toeplitz matrix Singular value Dimension (vector space) Mechanics of Materials Simple (abstract algebra) Discrete cosine transform Trigonometric functions Circulant matrix Eigenvalues and eigenvectors Mathematics |
Zdroj: | Journal of Sound and Vibration. 205:706-711 |
ISSN: | 0022-460X |
DOI: | 10.1006/jsvi.1997.1026 |
Popis: | If the element r(i), of an unsymmetric Toeplitz matrix, R, are periodic, then for a sufficiently large dimension R becomes circulant with eignvalues given by the finite Fourier transform of the first row. The eignvalues are then expressible in a simple closed form for sums of cosine functions. Then ratios of eigenvalues equal ratios of coefficients of the cosine functions. Application to matrices of third order cumulants of phase coupled cosine functions yields expressions for singular values which are useful in the identification of orthogonal cutting states |
Databáze: | OpenAIRE |
Externí odkaz: |