Averaging structure in the 3x+1 problem
Autor: | Marc Chamberland |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Journal of Number Theory. 148:384-397 |
ISSN: | 0022-314X |
DOI: | 10.1016/j.jnt.2014.09.024 |
Popis: | The 3 x + 1 problem has resisted analysis from multiple perspectives for many decades. This paper studies the more general q x + r problem, where q and r are odd, and finds new, averaging structures for the iterates. This structure supports the conjecture that all orbits enter a cycle if q = 1 , 3 but divergent orbits exist if q ≥ 5 . |
Databáze: | OpenAIRE |
Externí odkaz: |