Averaging structure in the 3x+1 problem

Autor: Marc Chamberland
Rok vydání: 2015
Předmět:
Zdroj: Journal of Number Theory. 148:384-397
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2014.09.024
Popis: The 3 x + 1 problem has resisted analysis from multiple perspectives for many decades. This paper studies the more general q x + r problem, where q and r are odd, and finds new, averaging structures for the iterates. This structure supports the conjecture that all orbits enter a cycle if q = 1 , 3 but divergent orbits exist if q ≥ 5 .
Databáze: OpenAIRE