An Optimal Control Problem for A Viscoelastic Plate in a Dynamic Contact with an Obstacle
Autor: | Mária Kečkemétyová, Igor Bock |
---|---|
Rok vydání: | 2018 |
Předmět: |
Control theory
General Mathematics Obstacle 010102 general mathematics 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing 02 engineering and technology 0101 mathematics Optimal control 01 natural sciences Viscoelasticity Mathematics Dynamic contact |
Zdroj: | Tatra Mountains Mathematical Publications. 71:27-37 |
ISSN: | 1210-3195 |
DOI: | 10.2478/tmmp-2018-0003 |
Popis: | We deal with an optimal control problem governed by a nonlinear hyperbolic initial-boundary value problem describing the perpendicular vibrations of a simply supported anisotropic viscoelastic plate against a rigid obstacle. A variable thickness of a plate plays the role of a control variable. We verify the existence of an optimal thickness function. |
Databáze: | OpenAIRE |
Externí odkaz: |