Large Solutions to Elliptic Systems of $$\infty$$-Laplacian Equations

Autor: Weifeng Wo, Jianduo Yu, Feiyao Ma
Rok vydání: 2021
Předmět:
Zdroj: Mathematical Notes. 109:971-979
ISSN: 1573-8876
0001-4346
DOI: 10.1134/s000143462105031x
Popis: In this paper, we study the existence, uniqueness and boundary behavior of positive boundary blow-up solutions to the quasilinear system $$\Delta_{\infty}u=a(x)u^{p}v^{q}$$ , $$\Delta_{\infty}v=b(x)u^{r}v^{s}$$ in a smooth bounded domain $$\Omega\subset R^{N}$$ , with the explosive boundary condition $$u=v=+\infty$$ on $$\partial\Omega$$ , where the operator $$\Delta_{\infty}$$ is the $$\infty$$ -Laplacian, the positive weight functions $$a(x)$$ , $$b(x)$$ are Holder continuous in $$\Omega$$ , and the exponents verify $$p$$ , $$s > 3$$ , $$q$$ , $$r>0$$ , and $$(p-3)(s-3) > qr$$ .
Databáze: OpenAIRE