Progress towards ignition on the National Ignition Facility

Autor: Hans W. Herrmann, Charles Yeamans, J. D. Moody, E. L. Dewald, Gary Grim, Gilbert Collins, John Kline, Nobuhiko Izumi, S. P. Hatchett, K. C. Chen, D. E. Hinkel, P. M. Celliers, Riccardo Betti, A. V. Hamza, A. Nikroo, Edward I. Moses, Scott Sepke, Paul J. Wegner, Johan Frenje, Evan Mapoles, M. Meezan, Cliff Thomas, P. T. Springer, H.-S. Park, C. L. Olson, Pierre Michel, M. M. Marinak, P. K. Patel, J. D. Lindl, D. A. Callahan, Daniel Clark, V. A. Smalyuk, M. Mauldin, Andrew MacPhee, M. Gatu Johnson, T. Ma, Fredrick Seguin, Damien Hicks, Jose Milovich, Wolfgang Stoeffl, O. L. Landen, M. J. Edwards, R. J. Leeper, J. D. Sater, B. Jacoby, M. Hoppe, D. K. Bradley, Art Pak, L. J. Atherton, N. Hein, J. P. Knauer, J. D. Kilkenny, V. Yu. Glebov, M. D. Rosen, L. J. Suter, G. A. Kyrala, E. M. Giraldez, D. A. Shaughnessy, Tilo Doeppner, Robert L. Kauffman, C. J. Cerjan, Doug Wilson, Siegfried Glenzer, Kathy Opachich, L. A. Bernstein, Michael Farrell, Sean Regan, H. G. Rinderknecht, S. N. Dixit, D. H. Munro, Mark D. Wilke, Richard Town, Laurent Divol, T. C. Sangster, P. W. McKenty, D. H. Schneider, B. J. Kozioziemski, O. S. Jones, B. J. MacGowan, Matthew Moran, Harry Robey, Steven Ross, R. A. Lerche, D. H. Edgell, D. L. Bleuel, James E. Fair, K. Widman, Christian Stoeckl, T. G. Parham, J. A. Koch, R. Benedetti, T. R. Boehly, S. V. Weber, R. Tommasini, Steven H. Batha, Jay D. Salmonson, D. R. Harding, S. Le Pape, J. A. Caggiano, Bruce Remington, Alex Zylstra, R. J. Fortner, Joseph Ralph, W. W. Hsing, B. A. Hammel, Daniel H. Kalantar, R. D. Petrasso, A. J. Mackinnon, S. W. Haan, Brian Spears, K. N. LaFortune
Rok vydání: 2013
Předmět:
Zdroj: Physics of Plasmas. 20:070501
ISSN: 1089-7674
1070-664X
DOI: 10.1063/1.4816115
Popis: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm3 with an areal density (ρR) of ∼1.5 g/cm2, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm2, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.
Databáze: OpenAIRE