Levi's Lemma, pseudolinear drawings of Kn, and empty triangles

Autor: Alan Arroyo, Gelasio Salazar, Dan McQuillan, R. Bruce Richter
Rok vydání: 2017
Předmět:
Zdroj: Journal of Graph Theory. 87:443-459
ISSN: 0364-9024
DOI: 10.1002/jgt.22167
Popis: There are three main thrusts to this article: a new proof of Levi's Enlargement Lemma for pseudoline arrangements in the real projective plane; a new characterization of pseudolinear drawings of the complete graph; and proofs that pseudolinear and convex drawings of Kn have n2+O(nlogn) and O(n2), respectively, empty triangles. All the arguments are elementary, algorithmic, and self-contained.
Databáze: OpenAIRE