Levi's Lemma, pseudolinear drawings of Kn, and empty triangles
Autor: | Alan Arroyo, Gelasio Salazar, Dan McQuillan, R. Bruce Richter |
---|---|
Rok vydání: | 2017 |
Předmět: |
Lemma (mathematics)
Regular polygon Complete graph 0102 computer and information sciences 02 engineering and technology Mathematical proof 01 natural sciences Combinatorics Levi's lemma 010201 computation theory & mathematics Real projective plane 0202 electrical engineering electronic engineering information engineering Discrete Mathematics and Combinatorics 020201 artificial intelligence & image processing Geometry and Topology Mathematics |
Zdroj: | Journal of Graph Theory. 87:443-459 |
ISSN: | 0364-9024 |
DOI: | 10.1002/jgt.22167 |
Popis: | There are three main thrusts to this article: a new proof of Levi's Enlargement Lemma for pseudoline arrangements in the real projective plane; a new characterization of pseudolinear drawings of the complete graph; and proofs that pseudolinear and convex drawings of Kn have n2+O(nlogn) and O(n2), respectively, empty triangles. All the arguments are elementary, algorithmic, and self-contained. |
Databáze: | OpenAIRE |
Externí odkaz: |