Underwater sound absorption performance of exponential gradient anechoic coating

Autor: Teng-Fei Si, Zhen-Hua Hou, Tian-Ge Li, Zhi-Jun Zhang
Rok vydání: 2022
Předmět:
Zdroj: Modern Physics Letters B. 36
ISSN: 1793-6640
0217-9849
DOI: 10.1142/s0217984922501263
Popis: In this paper, the gradient anechoic coating whose density changes exponentially along direction of thickness is investigated. A numerical model is established by finite element method (FEM) to analyze the underwater sound absorption performance under different density distribution. The calculation results show that the exponential anechoic coating has better sound absorption performance compared with the homogeneous medium and linear anechoic coating. In addition, a discrete layered method is proposed to achieve gradient characteristics. In order to change the equivalent density of each layer, periodically distributed semi-cylindrical steel scatterers with different diameters are embedded in each layer. Therefore, the density function of the whole coating changes in exponential gradient with stepped function. Based on the sound absorption mechanism of multiple scattering and waveform conversion, the sound absorption is improved in low-frequency band from 0 Hz to 1000 Hz. The exponential gradient anechoic coating has potential applications in underwater sound absorption and vibration control.
Databáze: OpenAIRE