The coupling symbols and algebrae of subducible, octahedrally projected ligand field eigenvectors
Autor: | Bryan R. Hollebone, John C. Donini |
---|---|
Rok vydání: | 1976 |
Předmět: | |
Zdroj: | Theoretica Chimica Acta. 42:97-110 |
ISSN: | 1432-2234 0040-5744 |
DOI: | 10.1007/bf00547066 |
Popis: | The 3Γ symbols required for the application of the Wigner-Eckart theorem to strong ligand field matrix elements are derived for complex basis functions quantized on the C4Z, C3XYZ, C2Zand C2XYaxes of an octahedron. This scheme provides a standardized analysis technique for the matrix elements of subgroups in each of the four physically significant chains of the double group Oh*. This standardization yields the minimum necessary number of ligand field parameters in any subgroup and makes possible the direct comparability of equivalent parameters in different symmetries. A unique numerical labelling for both representations and complex components on each axis provides both a simple component selection rule algebra and numerical phase factors governing permutation and conjugation of the 3Γ symbols. |
Databáze: | OpenAIRE |
Externí odkaz: |