Popis: |
Dvalin field, discovered in 2010-2012. The location of this field is in the Norwegian Sea, as shown in (Figure 1). Dvalin field is an HPHT gas field in Middle Jurassic sandstone in the Garn and Ile Formations – the former being homogeneous with better reservoir properties, during the later heterogenous with low quality. (DVALIN, 2020) The well 6507/7-Z-2 H objective is to produce hydrocarbons from the Jurassic reservoir section of the Dvalin field safely and cost-effectively. The well was planned to be drilled near vertical in the reservoir section and TD'ed at a maximum depth corresponding to the Garn Formation base. After the productivity results from Z-3-H well came in at the low end of expectations, it was evaluated and decided to change the well profile of the Z-2-H well from vertical reservoir penetration to a horizontal profile; to have two penetrations with a minimum of 150m MD separation in the upper high permeable streak and then drop to penetrate lower high permeable streak. This decision was conducted only three days before starting the 17.5-inch section on the subject well. One Team culture was the key to achieving this significant change successfully. The decision to change the well-profile was conducted after a thorough engineering evaluation, including offset well analysis, which was very limited as the closest horizontal well was more than 40 km away. As the well was not planned as a horizontal well, departure between the surface location and Target Easting & Northing was minimal. Therefore, a high turn and deeper inclination build were required, which added some complexity to the well design. One of the additional primary risks related to this change of trajectory design is deploying a more complex BHA design in the reservoir section with a full suite of LWD technologies run in an HT environment. In the planning phase, special consideration was needed to accurately simulate the expected circulating temperature and have proper procedures in place for temperature management and control. Being the first horizontal well in the field, thus detailed planning was key for successful execution. Ultra-Deep Azimuthal Resistivity Tool (UDAR) Reservoir-Mapping capability was considered to help optimize the landing and navigate within the reservoir section. A feasibility study was conducted, and a 2-receiver Ultra Deep Azimuthal Resistivity Tool BHA configuration was selected and deployed. During the execution, the Ultra Deep Azimuthal Resistivity Tool real-time inversion mapped the reservoir geometry, revealing resistive layers within the Garn formation, thereby facilitating optimal placement of the well to achieve the set objectives. The well execution was largely considered flawless, with the real-time Ultra Deep Azimuthal Resistivity Tool data and corresponding interpretations facilitating decisions. |