The Impact of Model Resolution on Differences between Independent Column Approximation and Monte Carlo Estimates of Shortwave Surface Irradiance and Atmospheric Heating Rate

Autor: Catherine Gautier, William O'Hirok
Rok vydání: 2005
Předmět:
Zdroj: Journal of the Atmospheric Sciences. 62:2939-2951
ISSN: 1520-0469
0022-4928
DOI: 10.1175/jas3519.1
Popis: Within general circulation models (GCMs), domain average radiative fluxes are computed using plane-parallel radiative transfer algorithms that rely on cloud overlap schemes to account for clouds not resolved at the horizontal resolution of a grid cell. These parameterizations have a strong statistical approach and have difficulty being applied well to all cloudy conditions. A more physically based superparameterization has been developed that captures subgrid cloud variability using an embedded cloud system resolving model (CSRM) within each GCM grid cell. While plane-parallel radiative transfer computations are generally appropriate at the scale of a GCM grid cell, their suitability for the much higher spatially resolved CSRMs (2–4 km) is unknown because they ignore photon horizontal transport effects. The purpose of this study is to examine the relationship between model horizontal resolution and 3D radiative effects by computing the differences between independent column approximations (ICA) and 3D Monte Carlo estimates of shortwave surface irradiance and atmospheric heating rate. Shortwave radiative transfer computations are performed on a set of six 2D fields composed of stratiform and convective liquid water and ice clouds. To establish how 3D effects vary with the size of a grid cell, this process is repeated as the model resolution is progressively degraded from 200 to 20 km. For shortwave surface irradiance, the differences between the 3D and ICA results can reach 500 W m−2. At model resolutions of between 2.0 and 5.0 km the difference for almost all columns is reduced to a maximum of ±100 W m−2. For atmospheric heating rates assessed at the level of individual model cells, 3D radiative effects can approach a maximum value of ±1.2 K h−1 when the horizontal column size is 200 m. However, between model resolutions of 2.0 and 5.0 km, 3D radiative effects are reduced to well below ±0.1 K h−1 for a large majority of the cloudy cells. While this finding seems to bode well for the CSRM, the results ultimately need to be understood within the context of how 3D radiative effects impact not only heating rates but also cloud dynamics.
Databáze: OpenAIRE