Generalized small-dimension lemma and d’Alembert type functional equation on compact groups
Autor: | Iz-iddine EL-Fassi, Abdellatif Chahbi |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Boletín de la Sociedad Matemática Mexicana. 27 |
ISSN: | 2296-4495 1405-213X |
DOI: | 10.1007/s40590-021-00352-0 |
Popis: | Let $${\mathbb {C}}$$ be the set of complex numbers and $$\sigma $$ be a continuous automorphism and $$\tau $$ be a continuous anti-automorphism such that $$\sigma ^{2}=\tau ^{2}=id.$$ The purpose of this paper is to generalize the small-dimension lemma [20, Small Dimension Lemma] and by help of it we find on any compact group G the non-zero continuous solutions $$f:G\rightarrow {\mathbb {C}}$$ of the functional equation $$\begin{aligned} f(x\sigma (y))+f(\tau (y)x)=2f(x)f(y), \ \ \ x,y \in G, \end{aligned}$$ in terms of continuous characters of G. |
Databáze: | OpenAIRE |
Externí odkaz: |