Study of the Processing of a Recycled WC–Co Powder: Can It Compete with Conventional WC–Co Powders?
Autor: | Fabienne Delaunois, Véronique Vitry, Alexandre Mégret |
---|---|
Rok vydání: | 2021 |
Předmět: |
Toughness
Materials science 020502 materials Metallurgy Metals and Alloys Sintering chemistry.chemical_element 02 engineering and technology Environmental Science (miscellaneous) Tungsten Raw material 021001 nanoscience & nanotechnology Wet-milling Fracture toughness 0205 materials engineering chemistry Mechanics of Materials Cemented carbide 0210 nano-technology Ball mill |
Zdroj: | Journal of Sustainable Metallurgy. 7:448-458 |
ISSN: | 2199-3831 2199-3823 |
Popis: | Cemented carbide tools suffer from many issues due to the use of tungsten and cobalt as raw materials. Indeed, those are listed by the European Commission as “critical raw materials” since 2011 and by the US Department of Interior as “critical minerals” in 2018. To remain competitive with the conventional high-speed steels, less performant but cheaper, WC–Co tools can be recycled. In the present paper, a WC–7.5Co powder, recycled by the “Coldstream” process, has been sintered with vacuum sintering. As preliminary experiments have shown that the sinterability of the powder is low, the sintering temperature was set at 1500 °C to achieve full density. In parallel, the influence of ball milling conditions (rotation speed and milling medium) on the reactivity of the recycled powder has been studied in terms of grain size distribution, hardness, and fracture toughness. The optimized milling conditions were found to be 6 h wet milling, leading to a hardness of about 1870 HV30 and a toughness of about 10.5 MPa√m after densification. The recycled powder can thus totally compete with conventional powders, opening avenues for the recycling of cemented carbide tools. Graphical Abstract |
Databáze: | OpenAIRE |
Externí odkaz: |