Phenotypic and Genotypic Detection of Biofilm-Forming Staphylococcus aureus from Different Food Sources in Bangladesh

Autor: Fatimah Mohammad Ballah, Md. Saiful Islam, Md. Liton Rana, Farhana Binte Ferdous, Rokeya Ahmed, Pritom Kumar Pramanik, Jarna Karmoker, Samina Ievy, Md. Abdus Sobur, Mahbubul Pratik Siddique, Mst. Minara Khatun, Marzia Rahman, Md. Tanvir Rahman
Rok vydání: 2022
DOI: 10.20944/preprints202206.0196.v1
Popis: Staphylococcus aureus is a major food-borne pathogen. The ability of S. aureus to produce biofilm is a significant virulence factor triggering its persistence in hostile environments. In this study, we screened a total of 420 different food samples and human hand swabs to detect S. aureus and to determine their biofilm formation ability. Samples analyzed were meat, milk, egg, fish, fast foods, and hand swabs. S. aureus were detected by culturing, staining, biochemical, and PCR. Biofilm formation ability was determined by Congo Red Agar (CRA) plate and Crystal Violet Microtiter Plate (CVMP) tests. The icaA, icaB, icaC, icaD, and bap genes involved in the synthesis of bio-film-forming intracellular adhesion compounds were detected by PCR. About 23.81% (100/420; 95% CI: 14.17-29.98%) samples harbored S. aureus as revealed by detection of the nuc gene. CRA plate revealed 20% of S. aureus isolates as strong biofilm producers, while 69% and 11% as in-termediate and non-biofilm producers, respectively. By the CVMP staining method, 20%, 77%, and 3% of the isolates were found strong, intermediate, and non-biofilm producers. Furthermore, 21% of S. aureus isolates carried at least one biofilm-forming gene, where icaA, icaB, icaC, icaD, and bap genes were detected in 15%, 20%, 7%, 20%, and 10% of the S. aureus isolates, respectively. Bivariate analysis showed high significant correlations (p
Databáze: OpenAIRE