Spatial analysis approaches for the evaluation and protection of groundwater resources in large watersheds of the Canadian Shield

Autor: D. Mayappo, D. Graillot, F. Paran, S. Nadeau, Vincent Cloutier, Eric Rosa
Rok vydání: 2021
Předmět:
Zdroj: Hydrogeology Journal. 29:2053-2075
ISSN: 1435-0157
1431-2174
DOI: 10.1007/s10040-021-02367-3
Popis: This study focuses on the development of two GIS-based approaches that are used jointly to evaluate the groundwater resources associated with granular aquifers in shield environments. The first approach is a multi-criteria analysis (MCA) using an analytical hierarchic process (AHP) based on geological and hydrogeological data for ranking the probability of finding readily available groundwater resources in a specific territory. The second approach relies on GIS-based geometric calculations that were developed for evaluating the extent and volume of aquifers. The approaches are applied on a 100 × 100 m grid in a 185,000-km2 area corresponding to watersheds of the James Bay area in Quebec, Canada. The MCA-AHP approach revealed that the unconfined granular aquifers that present the highest aquifer potential (AP) are sparsely distributed and mostly associated with glaciofluvial formations such as the Harricana and Sakami moraines. The geometric calculations approach allowed for estimating that the total volume of groundwater stored in the unconfined granular aquifers reaches approximately 40 km3. When used jointly, the two approaches reveal that the shallow unconfined aquifers that require increased groundwater protection account for approximately 5% of the territory. In areas of confined granular aquifers, the highest APs are located in river valleys and lowlands. A sensitivity analysis conducted on the MCA-AHP approach revealed that the grid size does not significantly affect the results. Therefore, the approach was expanded northward, to a 490,000-km2 territory reaching the Ungava Bay area. The proposed method could be adapted and applied in other shield areas.
Databáze: OpenAIRE