Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions

Autor: Sotirios E. Notaris
Rok vydání: 2006
Předmět:
Zdroj: Mathematics of Computation. 75:1217-1232
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-06-01859-x
Popis: We evaluate explicitly the integrals ∫ 1 -1 π n (t)/(r t)dt, |r| ≠ 1, with the π n being any one of the four Chebyshev polynomials of degree n. These integrals are subsequently used in order to obtain error bounds for interpolatory quadrature formulae with Chebyshev abscissae, when the function to be integrated is analytic in a domain containing [-1,1] in its interior.
Databáze: OpenAIRE