A scenario for torus T2 destruction via a global bifurcation
Autor: | Iberê L. Caldas, Marcelo Bussotti Reyes, M.S. Baptista, José Carlos Sartorelli, Tiago Pereira, Jürgen Kurths |
---|---|
Rok vydání: | 2009 |
Předmět: |
General Mathematics
Applied Mathematics Mathematical analysis General Physics and Astronomy Statistical and Nonlinear Physics Saddle-node bifurcation Heteroclinic bifurcation Bifurcation diagram law.invention Nonlinear Sciences::Chaotic Dynamics law Saddle point Intermittency Homoclinic bifurcation Infinite-period bifurcation Saddle Mathematical physics Mathematics |
Zdroj: | Chaos, Solitons & Fractals. 39:2198-2210 |
ISSN: | 0960-0779 |
DOI: | 10.1016/j.chaos.2007.06.115 |
Popis: | We show a scenario of a two-frequency torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T 2 with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-II intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. � 2007 Elsevier Ltd. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |