Autor: |
Felix Leonardo Castillo, Roswall Enrique Bethancourt, Mohammed Sarhan, Abd Al Sayfi, Imad Al Hamlawi, Luis Ramon Baptista, Sultan Saeed Al Mansoori, Ali Mubarak Al Braiki, Gennadys Ferrer, Alejandro Cortes, Mohammad Husien, Nader Jouzy, Delimar Cristobal Herrera, Praveen Joseph Benny, Ruslan Aubakirov, Joey Roberie |
Rok vydání: |
2021 |
Zdroj: |
Day 2 Tue, November 16, 2021. |
DOI: |
10.2118/207565-ms |
Popis: |
Significant mud losses during drilling often compromises well integrity whenever sustainable annular pressure (SAP), is observed due to poor cement integrity around 9-5/8-in casing in wells requiring gas lift completion. Heavy Casing Design (HCD) is applied as a solution; whereby, two casing strings are used to isolate the aquifers and loss zones, thus ensuring improved cement integrity around the 9 5/8-in intermediate casing. Casing While Drilling (CWD) is a potential solution to mitigate mud losses and wellbore instability enabling an optimized alternative to HCD by ensuring well integrity is maintained while reducing well construction cost. This paper details the first 12 ¼-in × 9-5/8-in non-directional CWD trial accomplished in Abu Dhabi onshore The Non-Directional CWD Technology was tested in a vertical intermediate hole section of a modified heavy casing design (MHCD) aimed at reducing well construction cost over heavy casing design (HCD) as shown in the figure 1. A drillable alloy bit with an optimized polycrystalline diamond cutters (PDC) cutting structure was used to drill with casing through a multi-formation interval with varying hardness and mechanical properties. Drilling dynamics, hydraulics and casing centralization analysis were performed to evaluate the directional tendency of the drill string along with the optimum drilling parameters to address the losses scenario, hole cleaning, vibration, and maximum surface torque. The CWD operation was completed in a single run with zero quality, health, safety, and environment (HSE) events and minimum exposure of personal to manual handling of heavy tubulars. Exceptional cement bonding was observed around the 9 5/8 in casing indicative of good hole quality despite running a significant number of centralizers (with smaller diameter), compared with the conventional drilled wells (cement bond logging was done after the section). CWD implementation saved two days of rig operations time relative to the average of the offset wells with the same casing design. The rate of Penetration (ROP) was slightly lower than the conventional drilling ROP in this application. The cost savings are mainly attributed to the elimination of casing-running flat time and Non-Productive Time (NPT) associated with clearing tight spots, BHA pack-off, wiper trips. The application of CWD in the MHCD wells deliver an estimated saving of USD 0.8MM in well construction cost per well compared to the HCD well design. Additional performance optimization opportunities have been identified for implementation in future applications. The combination of the MHCD and CWD technology enhances cementing quality across heavy loss zones translating into improved well integrity. Implementing this technology on MHCD wells could potentially save up to USD 200MM (considering 250 wells drilled). This is the first application of the technology in Abu Dhabi and brings key learning for future enhancement of drilling efficiency. The CWD technology has potential to enhance the wellbore construction process, which are typically impacted by either circulation losses and wellbore instability issues or a combination of both, it can applied to most of the offshore and onshore fields in Abu Dhabi. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|