On a connectedness principle of Shokurov-Koll��r type

Autor: Hacon, Christopher D., Han, Jingjun
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1801.01801
Popis: Let $(X,��)$ be a log pair over $S$, such that $-(K_X+��)$ is nef over $S$. It is conjectured that the intersection of the non-klt (non Kawamata log terminal) locus of $(X,��)$ with any fiber $X_s$ has at most two connected components. We prove this conjecture in dimension $\leq 4$ and in arbitrary dimension assuming the termination of klt flips.
9 pages, SCIENCE CHINA Mathematics, 2019
Databáze: OpenAIRE