On a connectedness principle of Shokurov-Koll��r type
Autor: | Hacon, Christopher D., Han, Jingjun |
---|---|
Rok vydání: | 2018 |
Předmět: | |
DOI: | 10.48550/arxiv.1801.01801 |
Popis: | Let $(X,��)$ be a log pair over $S$, such that $-(K_X+��)$ is nef over $S$. It is conjectured that the intersection of the non-klt (non Kawamata log terminal) locus of $(X,��)$ with any fiber $X_s$ has at most two connected components. We prove this conjecture in dimension $\leq 4$ and in arbitrary dimension assuming the termination of klt flips. 9 pages, SCIENCE CHINA Mathematics, 2019 |
Databáze: | OpenAIRE |
Externí odkaz: |