A hybridized semantic trust-based framework for personalized web page recommendation
Autor: | Gerard Deepak, Thriveni J, C N Pushpa, B. N. Shwetha, K. R. Venugopal |
---|---|
Rok vydání: | 2018 |
Předmět: |
Computer science
Latent semantic analysis 020206 networking & telecommunications 02 engineering and technology Information repository Computer Graphics and Computer-Aided Design Latent Dirichlet allocation Computer Science Applications Personalization World Wide Web symbols.namesake Trustworthiness Hardware and Architecture Web page 0202 electrical engineering electronic engineering information engineering symbols 020201 artificial intelligence & image processing Semantic Web Relevant information Software |
Zdroj: | International Journal of Computers and Applications. 42:729-739 |
ISSN: | 1925-7074 1206-212X |
DOI: | 10.1080/1206212x.2018.1480472 |
Popis: | The World Wide Web is constantly evolving and is the most dynamic information repository in the world that has ever existed. Since the information on the web is changing continuously and owing to the presence of a large number of similar web pages, it is very challenging to retrieve the most relevant information. With a large number of malicious and fake web pages, it is required to retrieve Web Pages that are trustworthy. Personalization of the recommendation of web pages is certainly necessary to estimate the user interests for suggesting web pages as per their choices. Moreover, the Web is tending towards a more organized Semantic Web which primarily requires semantic techniques for recommending the Web Pages. In this paper, a framework for personalized web page recommendation based on a hybridized strategy is proposed. Web Pages are recommended based on the user query by analyzing the … |
Databáze: | OpenAIRE |
Externí odkaz: |