Polymorphism of TGF-β1, TР53, CHEK2, ATM genes аnd chromosomal aberrations in workers at coal thermal electric power station

Autor: Yana A. Savchenko, Anastaiya O. Sokolova, Anastaiya V. Ryzhkova, Varvara I. Minina, A. N. Glushkov, Evgeniya A. Astaf’eva, Yulia A. Nelyubova, Olga A. Soboleva
Rok vydání: 2021
Předmět:
Zdroj: Hygiene and sanitation. 100:42-48
ISSN: 2412-0650
0016-9900
Popis: Introduction. Working conditions at coal-fired power plants cause an increased risk of the formation of chromosomal damage in workers. The contribution of the variability of the structure of the genes controlling the cell cycle and apoptosis to the occurrence of cytogenetic disorders induced by such mutagens has been little studied. Material and methods. The polymorphic variants of the genes: TP53 (rs1042522), CHEK2 (rs555607708), ATM (rs1801516), TGF-β1 (rs1800469), and the level of chromosomal aberrations (CA) in the lymphocytes of the blood were studied. Three hundred twenty-six workers of coal-fired power plants and 267 individuals who did not work in industrial enterprises were examined. All individuals were Caucasians, residents of Kemerovo (Western Siberia, Russia). Results. The level of CA in blood lymphocytes in thermal power plant workers was established to be statistically significantly higher than that of residents of the same locality who never works in industrial enterprises (3.05 ± 0.09% versus 1.67 ± 0.07%, p = 0, 000001). The prevalence of the polymorphic variants of the TP53 (rs1042522), CHEK2 (rs555607708), ATM (rs1801516), TGF-β1 (rs1800469) genes in the group of workers was the same to those in the comparison group and corresponded to the global data obtained in Caucasians. In the group of workers with the TT genotype of the TGF-β1 gene, the frequency of metaphases with chromosome damage was statistically significantly higher than in individuals with the CC genotype (4.07 ± 0.41% versus 2.85 ± 0.10%, p = 0.006). Discussion. For the first time a significant contribution of polymorphic variants of TGF-β1 genes to the formation of chromosomal damage in working coal-fired power plants was revealed. This may be associated with an increased level of expression of the multifunctional cytokine TGF-β1 in owners of the TT genotype and its ability to influence proliferation, apoptosis, telomerase activity, and other critical cellular processes. Conclusion. The results of the study I, ndicate that not only the complex of industrial genotoxicants, but also individual genetic characteristics of the organism can influence on the formation of cytogenetic disorders in workers at thermal power plants.
Databáze: OpenAIRE