Statistical moments of the random linear transport equation

Autor: Fabio Antonio Dorini, M. Cristina C. Cunha
Rok vydání: 2008
Předmět:
Zdroj: Journal of Computational Physics. 227:8541-8550
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2008.06.002
Popis: This paper deals with a numerical scheme to approximate the mth moment of the solution of the one-dimensional random linear transport equation. The initial condition is assumed to be a random function and the transport velocity is a random variable. The scheme is based on local Riemann problem solutions and Godunov's method. We show that the scheme is stable and consistent with an advective-diffusive equation. Numerical examples are added to illustrate our approach.
Databáze: OpenAIRE