Autor: |
James C. Correll, Kyle Fletcher, Richard W Michelmore, Allen Van Deynze, Chunda Feng, Alexander I. Putman, Kelley J. Clark, Steven J. Klosterman, Oon-Ha Shin |
Rok vydání: |
2021 |
Předmět: |
|
Popis: |
We report the first telomere-to-telomere genome assembly for an oomycete. This assembly has extensive synteny with less complete genome assemblies of other oomycetes and will therefore serve as a reference genome for this taxon. Downy mildew disease of spinach, caused by the oomycete Peronospora effusa, causes major losses to spinach production. The 17 chromosomes of P. effusa were assembled telomere-to-telomere using Pacific Biosciences High Fidelity reads. Sixteen chromosomes are complete and gapless; Chromosome 15 contains one gap bridging the nucleolus organizer region. Putative centromeres were identified on all chromosomes. This new assembly enables a re-evaluation of the genomic composition of Peronospora spp.; the assembly was almost double the size and contained more repeat sequences than previously reported for any Peronospora spp. Genome fragments consistently under-represented in six previously reported assemblies of P. effusa typically encoded repeats. Some genes annotated as encoding effectors were organized into multigene clusters on several chromosomes. At least two effector-encoding genes were annotated on every chromosome. The intergenic distances between annotated genes were consistent with the two-speed genome hypothesis, with some effectors located in gene-sparse regions. The near-gapless assembly revealed apparent horizontal gene transfer from Ascomycete fungi. Gene order was highly conserved between P. effusa and the genetically oriented assembly of the oomycete Bremia lactucae. High levels of synteny were also detected with Phytophthora sojae. Many oomycete species may have similar chromosome organization; therefore, this genome assembly provides the foundation for genomic analyses of diverse oomycetes. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|