m-commuting maps on triangular and strictly triangular infinite matrices

Autor: Roksana Słowik, Driss Aiat Hadj Ahmed
Rok vydání: 2021
Předmět:
Zdroj: The Electronic Journal of Linear Algebra. 37:247-255
ISSN: 1081-3810
DOI: 10.13001/ela.2021.5083
Popis: Let $N_\infty(F)$ be the ring of infinite strictly upper triangular matrices with entries in an infinite field. The description of the commuting maps defined on $N_\infty(F)$, i.e. the maps $f\colon N_\infty(F)\rightarrow N_\infty(F)$ such that $[f(X),X]=0$ for every $X\in N_\infty(F)$, is presented. With the use of this result, the form of $m$-commuting maps defined on $T_\infty(F)$ -- the ring of infinite upper triangular matrices, i.e. the maps $f\colon T_\infty(F)\rightarrow T_\infty(F)$ such that $[f(X),X^m]=0$ for every $X\in T_\infty(F)$, is found.
Databáze: OpenAIRE