Image Segmentation Using Linked Mean-Shift Vectors and Global/Local Attributes

Autor: Young Hwan Kim, Suk-Ju Kang, Hanjoo Cho
Rok vydání: 2017
Předmět:
Zdroj: IEEE Transactions on Circuits and Systems for Video Technology. 27:2132-2140
ISSN: 1558-2205
1051-8215
Popis: This paper proposes novel noniterative mean-shift-based image segmentation that uses global and local attributes. The existing mean-shift-based methods use a fixed range bandwidth, and hence their accuracy is dependent on the range spectrum of an image. To resolve this dependency, this paper proposes to modify the range kernel in the mean-shift process to be anisotropic. The modification is conducted using a global attribute defined as the range covariance matrix of the image. Further, to alleviate oversegmentation, the proposed method merges the segments having similar local attributes more aggressively than other segments. The local attribute for each segment is defined as the sum of the variances of the chromatic components. Finally, to expedite the processing, the proposed method uses a region adjacency graph (RAG) for the merging process, thus differing from the existing linked mean-shift-based methods. In the experiments on the Berkeley segmentation data set, the use of the global and local attributes improved segmentation accuracy; the proposed method outperformed the state-of-the-art linked mean-shift-based method by showing an improvement of 2.15%, 3.16%, 3.32%, and 1.90% in probability rand index, segmentation covering, variation of information, and F-measure, respectively. Further, compared with the benchmark method, which uses the dilating and merging scheme, the proposed method improved the speed of the merging process 42 times by applying the RAG.
Databáze: OpenAIRE