Real-Time Multianalysis–Multimodel Superensemble Forecasts of Precipitation Using TRMM and SSM/I Products
Autor: | T. S. V. Vijaya Kumar, Ramesh K. Kakar, Sajani Surendran, William S. Olson, T. N. Krishnamurti, D. W. Shin, Ricardo Correa-Torres, Eric Williford, Joanne Simpson, Chris Kummerow, F. Joseph Turk, Robert F. Adler |
---|---|
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | Monthly Weather Review. 129:2861-2883 |
ISSN: | 1520-0493 0027-0644 |
DOI: | 10.1175/1520-0493(2001)129<2861:rtmmsf>2.0.co;2 |
Popis: | This paper addresses real-time precipitation forecasts from a multianalysis‐multimodel superensemble. The methodology for the construction of the superensemble forecasts follows previous recent publications on this topic. This study includes forecasts from multimodels of a number of global operational centers. A multianalysis component based on the Florida State University (FSU) global spectral model that utilizes TRMM and SSM/I datasets and a number of rain-rate algorithms is also included. The difference in the analysis arises from the use of these rain rates within physical initialization that produces distinct differences among these components in the divergence, heating, moisture, and rain-rate descriptions. A total of 11 models, of which 5 represent global operational models and 6 represent multianalysis forecasts from the FSU model initialized by different rain-rate algorithms, are included in the multianalysis‐multimodel system studied here. In this paper, ‘‘multimodel’’ refers to different models whose forecasts are being assimilated for the construction of the superensemble. ‘‘Multianalysis’’ refers to different initial analysis contributing to forecasts from the same model. The term superensemble is being used here to denote the bias-corrected forecasts based on the products derived from the multimodel and the multianalysis. The training period is covered by nearly 120 forecast experiments prior to 1 January 2000 for each of the multimodels. These are all 3-day forecasts. The statistical bias of the models is determined from multiple linear regression of these forecasts against a ‘‘best’’ rainfall analysis field that is based on TRMM and SSM/I datasets and using the rain-rate algorithms recently developed at NASA Goddard Space Flight Center. This paper discusses the results of real-time rainfall forecasts based on this system. The main results of this study are that the multianalysis‐multimodel superensemble has a much higher skill than the participating member models. The skill of this system is higher than those of the ensemble mean that assigns a weight of 1.0 to all including the poorer models and the ensemble mean of bias-removed individual models. The selective weights for the entire multianalysis‐multimodel superensemble forecast system make it superior to individual models and the above mean representations. The skill of precipitation forecasts is addressed in several ways. The skill of the superensemble-based rain rates is shown to be higher than the following: (a) individual model’s skills with and without physical initialization, (b) skill of the ensemble mean, and (c) skill of the ensemble mean of individually biasremoved models. The equitable-threat scores at many thresholds of rain are also examined for the various models and noted that for days 1‐3 of forecasts, the superensemble-based forecasts do have the highest skills. The training phase is a major component of the superensemble. Issues on optimizing the number of training days is addressed by examining training with days of high forecast skill versus training with low forecast skill, and training with the best available rain-rate datasets versus those from poor representations of rain. Finally the usefulness of superensemble forecasts of rain for providing possible guidance for flood events such as the one over Mozambique during February 2000 is shown. |
Databáze: | OpenAIRE |
Externí odkaz: |