Asymptotic Size of Covering Arrays: An Application of Entropy Compression

Autor: Nevena Francetić, Brett Stevens
Rok vydání: 2017
Předmět:
Zdroj: Journal of Combinatorial Designs. 25:243-257
ISSN: 1063-8539
DOI: 10.1002/jcd.21553
Popis: A covering array CA (N;t,k,v) is an N×k array A such that each cell of A takes a value from a v-set V, which is called the alphabet. Moreover, the set Vt is contained in the set of rows of every N×t subarray of A. The parameter N is called the size of an array and CAN (t,k,v) denotes the smallest N for which a CA (N;t,k,v) exists. It is well known that CAN (t,k,v)=Θ(log2k) [10]. In this paper, we derive two upper bounds on d(t,v)=lim supk→∞ CAN (t,k,v)log2k using an algorithmic approach to the Lovasz local lemma also known as entropy compression.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje