Asymptotic Size of Covering Arrays: An Application of Entropy Compression
Autor: | Nevena Francetić, Brett Stevens |
---|---|
Rok vydání: | 2017 |
Předmět: |
Entropy compression
Value (computer science) 020206 networking & telecommunications 0102 computer and information sciences 02 engineering and technology 01 natural sciences Set (abstract data type) Combinatorics 010201 computation theory & mathematics 0202 electrical engineering electronic engineering information engineering Discrete Mathematics and Combinatorics Alphabet Lovász local lemma Row Mathematics |
Zdroj: | Journal of Combinatorial Designs. 25:243-257 |
ISSN: | 1063-8539 |
DOI: | 10.1002/jcd.21553 |
Popis: | A covering array CA (N;t,k,v) is an N×k array A such that each cell of A takes a value from a v-set V, which is called the alphabet. Moreover, the set Vt is contained in the set of rows of every N×t subarray of A. The parameter N is called the size of an array and CAN (t,k,v) denotes the smallest N for which a CA (N;t,k,v) exists. It is well known that CAN (t,k,v)=Θ(log2k) [10]. In this paper, we derive two upper bounds on d(t,v)=lim supk→∞ CAN (t,k,v)log2k using an algorithmic approach to the Lovasz local lemma also known as entropy compression. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |