Droplet impingement on nano-textured superhydrophobic surface: Experimental and numerical study
Autor: | Jian Qu, Shusheng Yang, Yaolin Yang, Huihe Qiu, Dinghua Hu |
---|---|
Rok vydání: | 2019 |
Předmět: |
Level set method
Materials science Computer simulation General Physics and Astronomy 02 engineering and technology Surfaces and Interfaces General Chemistry Mechanics 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics Kinetic energy 01 natural sciences Surface energy 0104 chemical sciences Surfaces Coatings and Films Physics::Fluid Dynamics Phase (matter) Nano Weber number 0210 nano-technology Hydrodynamic theory |
Zdroj: | Applied Surface Science. 491:160-170 |
ISSN: | 0169-4332 |
DOI: | 10.1016/j.apsusc.2019.06.104 |
Popis: | The impact characteristics of liquid droplet on the nano-textured superhydrophobic surface have been investigated experimentally and numerically to understand the underlying mechanism and select appropriate models to describe them. The evolution of impact process with droplet impact velocity varied form 0.11–3.9 m/s (or Weber number ranging from 0.3 to 421.4) was recorded and analyzed. Besides, a conservative level set method coupled with dynamic contact angle models was developed to track the phase interface and made a comparison with the experiment. During the spreading and receding phases, the numerical simulation results showed good agreement with the experiment. The impact of droplet satisfied the energy conservation between kinetic and surface energy, and the maximum spreading factor (βmax) can be well correlated by a scaling law of βmax ~ We0.52. Both of the contact time and non-dimensional contact time of bouncing droplets were independent of Weber number in the range of 1.5 to 121. The predicted non-dimensional contact times were in good agreement with the reference value of 2.6 ± 0.1 at low and medium Weber numbers. The dynamic contact angle models derived from the hydrodynamic theory and molecular-kinetic theory, respectively, can mainly apply to the advancing and receding phases of droplet impact on nano-textured superhydrophobic surfaces. |
Databáze: | OpenAIRE |
Externí odkaz: |