Intelligent System for Detection of Abnormalities in Human Cancerous Cells and Tissues
Autor: | Jamil Ahmed Chandio, M. Abdul Rahman Soomrani |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
General Computer Science Computer science Thyroid Cancer medicine.disease computer.software_genre Convolutional neural network Data preparation 03 medical and health sciences DICOM 030104 developmental biology 0302 clinical medicine medicine.anatomical_structure 030220 oncology & carcinogenesis medicine Data mining Classifier (UML) computer |
Zdroj: | International Journal of Advanced Computer Science and Applications. 7 |
ISSN: | 2156-5570 2158-107X |
DOI: | 10.14569/ijacsa.2016.071135 |
Popis: | Due to the latest advances in the field of MML (Medical Machine Learning) a significant change has been witnessed and traditional diagnostic procedures have been converted into DSS (Decision Support Systems). Specially, classification problem of cancer discovery using DICOM (Digital Communication in Medicine) would assume to be one of the most important problems. For example differentiation between the cancerous behaviours of chromatin deviations and nucleus related changes in a finite set of nuclei may support the cytologist during the cancer diagnostic process. In-order to assist the doctors during the cancer diagnosis, this paper proposes a novel algorithm BCC (Bag_of_cancerous_cells) to select the most significant histopathological features from the well-differentiated thyroid cancers. Methodology of proposed system comprises upon three layers. In first layer data preparation have been done by using BMF (Bag of Malignant Features) where each nuclei is separated with its related micro-architectural components and behaviours. In second layer decision model has been constructed by using CNN (Convolutional Neural Network) classifier and to train the histopathological behaviours such like BCP (Bags of chromatin Paches) and BNP (Bags of Nuclei Patches). In final layer, performance evaluation is done. A total number of 4520 nuclei observations were trained to construct the decision models from which BCP (Bags of Chromatin Patches) consists upon the 2650 and BNP (Bags of Nuclei Patches) comprises upon 1870 instances. Best measured accuracy for BCP was recorded as 97.93% and BNP accuracy was measured as 97.86%. |
Databáze: | OpenAIRE |
Externí odkaz: |