Distributed localization algorithm for wireless sensor network based on multidimensional scaling and the shortest path distance correction

Autor: Yingqiang Ding, Liufeng Du, Ting Yang, Yugeng Sun
Rok vydání: 2009
Předmět:
Zdroj: Transactions of Tianjin University. 15:237-244
ISSN: 1995-8196
1006-4982
DOI: 10.1007/s12209-009-0042-1
Popis: Sensor localization is crucial for the configuration and applications of wireless sensor network (WSN). A novel distributed localization algorithm, MDS-DC was proposed for wireless sensor network based on multidimensional scaling (MDS) and the shortest path distance correction. In MDS-DC, several local positioning regions with reasonable distribution were firstly constructed by an adaptive search algorithm, which ensures the mergence between the local relative maps of the adjacent local position regions and can reduce the number of common nodes in the network. Then, based on the relationships between the estimated distances and actual distances of anchors, the distance estimation vectors of sensors around anchors were corrected in each local positioning region. During the computations of the local relative coordinates, an iterative process, which is the combination of classical MDS algorithm and SMACOF algorithm, was applied. Finally, the global relative positions or absolute positions of sensors were obtained through merging the relative maps of all local positioning regions. Simulation results show that MDS-DC has better performances in positioning precision, energy efficiency and robustness to range error, which can meet the requirements of applications for sensor localization in WSN.
Databáze: OpenAIRE