Popis: |
CO2 foam holds promising potential for conformance improvement and mobility reduction of CO2 injection in fractured systems. However, there still exists two main issues hampering its wide application and development, 1. Instability of CO2 foam lamellae under reservoir conditions, and 2. Uncertainties of foam flow in fracture systems. To address these two issues, we previously developed a series of functional nanocellulose materials to stabilize the CO2 foam (referred to NCF-st-CO2 foam), while the primary goal of this paper is to thoroughly elucidate foam generation, propagation and sweep of NCF-st-CO2 foam in fractured systems by using a self-designed visual heterogeneous fracture network. We found that NCF-st-CO2 foam produced noticeably greater pressure drop (ΔP) than CO2 foam during either co-injection (COI) or surfactant solution-alternating-gas (SAG) injection, and the threshold foam quality (fg*) was approximately 0.67. Foam generation was increased with total flow rate for CO2 foam and stayed constant for NCF-st-CO2 foam in fracture during COI. CO2 breakthrough occurred at high flow rates (>8 cm3/min). For SAG, large surfactant slug could prevent CO2 from early breakthrough and facilitate foaming in-situ. The increase in sweep efficiency by NCF-st-CO2 foam was observed near the producer for both COI and WAG, which was attributed to its better foaming capacity. Film division and behind mainly led to foam generation in the fracture model. Gravity segregation and override was insignificant during COI but became noticeable during SAG, which caused the sweep efficiency decreased by 3~9% at 1.0 fracture volume (FV) injected. Due to the enhanced foam film, the NCF-st-CO2 foam was able to mitigate gravitational effect, especially in the vicinity of producer. |