Magnetic resonance imaging evaluation of adjacent segments after cervical disc arthroplasty: magnet strength and its effect on image quality

Autor: Ivan J Antosh, Stephen M Yoest, John G. DeVine, Brian J. Woebkenberg, Clyde T Carpenter
Rok vydání: 2010
Předmět:
Zdroj: Journal of Neurosurgery: Spine. 13:722-726
ISSN: 1547-5654
Popis: Object Disc arthroplasty is an alternative to fusion following anterior discectomy when treating either cervical radiculopathy or myelopathy. Its theoretical benefits include preservation of the motion segment and the potential prevention of adjacent-segment degeneration. There is a paucity of data regarding the ability to use MR imaging to evaluate the adjacent segments. The purpose of this study was for the authors to introduce open MR imaging as an alternative method in imaging adjacent segments following cervical disc arthroplasty using a Co-Cr implant and to report their preliminary results using this technique. Methods Postoperative cervical MR images were obtained in the first 16 patients in whom the porous coated motion (PCM-V) cervical arthroplasty system was used to treat a single level between C-3 and C-7. Imaging was performed in all 16 patients with a closed 1.5-T unit, and in the final 6 patients it was also performed with an open 0.2-T unit. All images were evaluated by an independent radiologist observer for the ability to visualize the superior endplate, disc space, and inferior endplate at the superior and inferior adjacent levels. Results Utilizing the 1.5-T magnet to assess the superior adjacent level, the superior endplate, disc space, and inferior endplate could each be visualized less than 50% of the time on sagittal T1- and sagittal and axial T2-weighted images. Similarly, the inferior adjacent level structures were adequately visualized less than 50% of the time, with the exception of slightly improved visualization of the inferior endplate on T1-weighted images (56%). Axial images allowed worse visualization than sagittal images at both the superior and inferior adjacent levels. Utilizing the 0.2-T magnet to assess the superior and inferior adjacent levels, the superior endplate, disc space, and inferior endplate were adequately visualized in 100% of images. Conclusions Based on the results of this case series, it appears that the strength of the magnet affects the artifact from the Co-Cr endplates. The open 0.2-T MR imaging unit reduces artifact at adjacent levels after cervical disc arthroplasty without a significant reduction in the image quality. Magnetic resonance imaging can be used to evaluate the adjacent segments after disc arthroplasty if magnet strength is addressed, providing another means to assess the long-term efficacy of this novel treatment.
Databáze: OpenAIRE