Heat Recovery Ventilation Systems and their Physical Quantification

Autor: Boris Bielek, Daniel Szabó, Josip Klem, Roman Grolmus
Rok vydání: 2021
Zdroj: IOP Conference Series: Materials Science and Engineering. 1203:022045
ISSN: 1757-899X
1757-8981
DOI: 10.1088/1757-899x/1203/2/022045
Popis: The essence of ventilation is the exchange of air in the room for fresh outside air. At the same time ventilation is a factor that can significantly affect the energy efficiency of a building. Hygienic requirements for ventilation of interiors of buildings in the context of increasing the energy efficiency of buildings lead to the transformation of unregulated ventilation by infiltration to regulated ventilation systems with heat recovery. The regulated ventilation system makes it possible to optimize the ventilation intensity on the basis of a stimulus from the room user or automatically on the basis of sensors monitoring the quality of the indoor climate (temperature and relative humidity, CO2 concentration in the air, etc.). In addition, if we use a ventilation system with heat recovery from the exhaust air to preheat the fresh supply air to the room, we can achieve high energy efficiency of the building by meeting the hygienic criteria of the indoor climate. The article describes heat recovery ventilation systems and their basic conceptual solutions applied in the modern architecture. The heat exchange between the hot exhaust air and the cold supply air in the winter takes place in heat recovery ventilation units in the heat exchanger. The efficiency of heat recovery defines how much heat we can transfer from the exhaust air to the fresh air in the heat recovery exchanger. The article analyses individual factors influencing the efficiency of heat recovery. Due to the fact that the manufacturers of heat recovery ventilation units declare in their brochures or websites the values of the maximum efficiencies of their products, we were interested in their real efficiencies under normal operating conditions. Therefore, we subjected to experimental research in a large climate chamber a product from the German manufacturer Lunos, namely a specific type of decentralized heat recovery unit Lunos Nexxt E. The article describes the methodology of laboratory experiment, used experimental basis, brings and analyses measurement results and calculates real efficiency of the subject heat recovery in accordance with STN EN 13 141. In the end it compares measured values with the values from the manufacturer.
Databáze: OpenAIRE