Learning Higher-Order Programs through Predicate Invention

Autor: Stephen Muggleton, Rolf Morel, Andrew Cropper
Rok vydání: 2020
Předmět:
Zdroj: AAAI
ISSN: 2374-3468
2159-5399
DOI: 10.1609/aaai.v34i09.7113
Popis: A key feature of inductive logic programming (ILP) is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce ILP techniques to learn higher-order programs. We implement our idea in Metagolho, an ILP system which can learn higher-order programs with higher-order predicate invention. Our experiments show that, compared to first-order programs, learning higher-order programs can significantly improve predictive accuracies and reduce learning times.
Databáze: OpenAIRE