Markov Approximations of the Evolution of Quantum Systems
Autor: | J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Doklady Mathematics. 105:92-96 |
ISSN: | 1531-8362 1064-5624 |
DOI: | 10.1134/s1064562422020107 |
Popis: | Abstract The convergence in probability of a sequence of iterations of independent random quantum dynamical semigroups to a Markov process describing the evolution of an open quantum system is studied. The statistical properties of the dynamics of open quantum systems with random generators of Markovian evolution are described in terms of the law of large numbers for operator-valued random processes. For compositions of independent random semigroups of completely positive operators, the convergence of mean values to a semigroup described by the Gorini–Kossakowski–Sudarshan–Lindblad equation is established. Moreover, a sequence of random operator-valued functions with values in the set of operators without the infinite divisibility property is shown to converge in probability to an operator-valued function with values in the set of infinitely divisible operators. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |