Narrow quantum D-modules and quantum Serre duality
Autor: | Mark Shoemaker |
---|---|
Rok vydání: | 2022 |
Předmět: |
Pure mathematics
Algebra and Number Theory 010102 general mathematics Zero (complex analysis) Serre duality Mathematics::Algebraic Topology 01 natural sciences Cohomology Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology Genus (mathematics) 0103 physical sciences 010307 mathematical physics Geometry and Topology 0101 mathematics Variety (universal algebra) Mathematics::Symplectic Geometry Quantum Orbifold Stack (mathematics) Mathematics |
Zdroj: | Annales de l'Institut Fourier. 71:1135-1183 |
ISSN: | 1777-5310 |
DOI: | 10.5802/aif.3419 |
Popis: | Given Y a non-compact manifold or orbifold, we define a natural subspace of the cohomology of Y called the narrow cohomology. We show that despite Y being non-compact, there is a well-defined and non-degenerate pairing on this subspace. The narrow cohomology proves useful for the study of genus zero Gromov-Witten theory. When Y is a smooth complex variety or Deligne-Mumford stack, one can define a quantum D-module on the narrow cohomology of Y. This yields a new formulation of quantum Serre duality. |
Databáze: | OpenAIRE |
Externí odkaz: |