Transforming plane triangulations by simultaneous diagonal flips

Autor: Jean-Lou De Carufel, Tanvir Kaykobad
Rok vydání: 2021
Předmět:
Zdroj: Information Processing Letters. 170:106120
ISSN: 0020-0190
DOI: 10.1016/j.ipl.2021.106120
Popis: We study the number of simultaneous diagonal flips required to transform any triangulation into any other. The best known algorithm requires no more than 4 × ( 2 log ⁡ 54 53 + 2 log ⁡ 6 5 ) log ⁡ n + 2 ≈ 327.1 log ⁡ n simultaneous flips. This bound is asymptotically tight. In this paper, exploiting some newly discovered properties of blocking and blocked chords we bring the leading constant down to ≈85.8. We also show that 6 log ⁡ n log ⁡ 9 7 + 1 ≈ 16.6 log ⁡ n simultaneous flips are sufficient to transform any maximal outerplane graph into any other.
Databáze: OpenAIRE