A Machine Learning Approach to Determining Sub-Diffuse Optical Properties

Autor: Andrew C. Stier, Mia K. Markey, Jason S. Reichenberg, Will Goth, Matthew C. Fox, Yao Zhang, James W. Tunnell, Fabiana C.P.S. Lopes, Katherine R. Sebastian
Rok vydání: 2020
Předmět:
Zdroj: Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN).
DOI: 10.1364/ots.2020.sm2d.6
Popis: We demonstrate a machine learning approach that renders real-time subdiffuse optical property (γ) maps from spatial frequency domain images, laying the foundation for use in surgical guidance.
Databáze: OpenAIRE