A SQP-Method for Linearly Constrained Maximum Likelihood Problems
Autor: | Christian Kredler |
---|---|
Rok vydání: | 1996 |
Předmět: | |
Zdroj: | Applied Mathematics and Parallel Computing ISBN: 9783642997914 |
DOI: | 10.1007/978-3-642-99789-1_12 |
Popis: | Newton-like methods are standard algorithms for unrestricted parameter estimation in a wide class of nonlinear regression models. The search directions of the here presented algorithm are solutions from a sequence of quadratic (sub-)problems (SQP) with linear constraints. The practically important generalized linear models with natural link functions, e.g. log-linear or logistic regression, lead to strictly convex optimization problems for which this easy to implement extension of Newton’s method converges globally with quadratic rate. The numerical results are demonstrated at some ship damage data. |
Databáze: | OpenAIRE |
Externí odkaz: |