Autor: |
Norbert J. Mauser, Philippe Bechouche, Sigmund Selberg |
Rok vydání: |
2003 |
Předmět: |
|
Zdroj: |
Hyperbolic Problems: Theory, Numerics, Applications ISBN: 9783642629297 |
DOI: |
10.1007/978-3-642-55711-8_32 |
Popis: |
We deal with the derivation of the Schrodinger-Poisson system as a non-relativistic limit (i.e. c → − where c is the speed of light) of the Klein-Gordon-Maxwell or the Dirac-Maxwell system on ℝ1+3 We deal with convergence in the energy space C([0, T]; H 1). We use and motivate a splitting of the scalar Klein-Gordon field into a sum of two fields, corresponding, in the physical interpretation, to electrons and positrons. The crucial technique is to use the Klainerman-Machedon machinery for the appropriately scaled system which has null form structure for the case of Coulomb gauge. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|